Partial discharge localisation on power transformers using neural networks combined with sectional winding transfer functions as knowledge base
- verfasst von
- Peter Werle, Asghar Akbari Azirani, H. Borsi, Ernst Gockenbach
- Abstract
In this contribution the applicability of different neural classifiers trained by sectional winding transfer functions (SWTFs) of transformer coils for evaluating wideband electrical measured partial discharges (PD) is presented and discussed. Based on PD measurements on a distribution transformer in the laboratory it is demonstrated, that the introduced technique enables beside a determination of the apparent charge an adequate localisation of the PD origin. The performance and the reproducibility of this method leads to a short outlook on planned investigations and the possibilities for integrating this technique in online condition monitoring systems.
- Organisationseinheit(en)
-
Fachgebiet Hochspannungstechnik und Asset Management (Schering-Institut)
- Externe Organisation(en)
-
K.N. Toosi University of Technology (KNTU)
- Typ
- Aufsatz in Konferenzband
- Seiten
- 579-582
- Anzahl der Seiten
- 4
- Publikationsdatum
- 2001
- Publikationsstatus
- Veröffentlicht
- Peer-reviewed
- Ja
- ASJC Scopus Sachgebiete
- Allgemeiner Maschinenbau, Allgemeine Materialwissenschaften
- Elektronische Version(en)
-
https://doi.org/10.1109/ISEIM.2001.973734 (Zugang:
Geschlossen)